

Single Mode Fiber G.652.D

Specifications:

Fiber type G.652.D

OPK code D

Rev. 017-21/41

Fiber type G.652.D

OPK code D

Core Germanium doped silica

Cladding Silica, step index and matched clad type

Coating Dual layers of UV-cured acrylate

Optical Characteristics

Attenuation coefficient Loose tube Cables (typical / max.)

at 1310 nm 0.32 / 0.36 dB/km at 1550 nm 0.19 / 0.24 dB/km at 1625 nm 0.22 / 0.26 dB/km

Attenuation coefficient Tight Buffered Cables (typical / max.)

at 1310 nm $0.35 \, / \, 0.40 \; dB/km$ at 1550 nm $0.25 \, / \, 0.40 \; dB/km$

Point of discontinuity at 1310 nm and 1550 nm \leq 0.1 dB Cable cut-off wavelength (λ cc) \leq 1260 nm

Zero dispersion wavelength 1302 - 1322 nm

Zero dispersion slope $\leq 0.090 \text{ (ps/(nm2/km))}$

Chromatic dispersion at 1285 \sim 1330 nm \leq 3.5 ps/(nm.km)

Chromatic dispersion at 1550 nm \leq 18.0 ps/(nm.km)

Chromatic dispersion at 1625 nm \leq 22.0 ps/(nm.km) Maximum individual fiber PMD \leq 0.15 ps/Ökm

Fiber PMD link value ≤ 0.1 ps/Ökm

Effective group index of refraction at 1310 nm 1.467
Effective group index of refraction at 1550 nm 1.468

Effective group index of refraction at 1625 nm	1.468	
Backscatter coefficient at 1310 nm	-79.2 dB	
Backscatter coefficient at 1550 nm	-81.7 dB	
Backscatter coefficient at 1625 nm	-82.5 dB	

Geometrical Characteristics

Mode field diameter at 1310 nm	$9.2 \pm 0.4 \mu m$
Mode field diameter at 1550 nm	$10.4 \pm 0.5 \; \mu m$
Core/Cladding concentricity error	≤ 0.5 µm
Cladding diameter	$125.0 \pm 0.7 \mu m$
Cladding non-circularity	≤ 0.7%
Primary coating diameter (uncoloured fibre)	242 ±5 μm
Primary coating diameter (coloured fibre)	250 ±10 μm
Fibre curl radius	≥ 4.0 m
Coating-Cladding concentricity	≤ 12 µm

Macrobending loss

100 turns, mandrel diameter 50 mm at 1310 nm	$\leq 0.05 \text{ dB}$
100 turns, mandrel diameter 50 mm at 1550 nm	$\leq 0.05 \text{ dB}$
100 turns, mandrel diameter 60 mm at 1625 nm	$\leq 0.05 \text{ dB}$
1 turn, mandrel diameter 32 mm at 1550 nm	≤ 0.05 dB

Mechanical Characteristics

Proof test level	≥ 100 kpsi (1.0% strain)
Coating strip force	1.3 ~ 8.9 N

Dynamic fatigue resistance parameter ≥ 20

Typical attenuation is the value measured for at least 90% of the fibers in the cable.

OTDR measurement values can only be guaranteed for cable lengths of 1000 m and more.

Cable on the reel may show an discontinuity of the OTDR curve caused by winding of the cable on the reel.

 $Specifications \ are \ to \ change \ without \ notice. \ The \ information \ in \ this \ document \ must \ not \ be \ copied \ or \ reproduced \ without \ the \ prior \ written \ permission \ of \ the \ OPTOKON \ Kable \ Co., \ Ltd., \ s.r.o.$